Mapping action potentials and calcium transients simultaneously from the intact heart.

نویسندگان

  • K R Laurita
  • A Singal
چکیده

Intracellular calcium handling plays an important role in cardiac electrophysiology. Using two fluorescent indicators, we developed an optical mapping system that is capable of measuring calcium transients and action potentials at 256 recording sites simultaneously from the intact guinea pig heart. On the basis of in vitro measurements of dye excitation and emission spectra, excitation and emission filters at 515 +/- 5 and >695 nm, respectively, were used to measure action potentials with di-4-ANEPPS, and excitation and emission filters at 365 +/- 25 and 485 +/- 5 nm, respectively, were used to measure calcium transients with indo 1. The percent error due to spectral overlap was small when action potentials were measured (1.7 +/- 1.0%, n = 3) and negligible when calcium transients were measured (0%, n = 3). Recordings of calcium transients, action potentials, and isochrone maps of depolarization time and the time of calcium transient onset indicated negligible error due to fluorescence emission overlap. These data demonstrate that the error due to spectral overlap of indo 1 and di-4-ANEPPS is sufficiently small, such that optical mapping techniques can be used to measure calcium transients and action potentials simultaneously in the intact heart.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Mapping of Action Potentials and Calcium Transients in the Mouse Heart

The mouse heart is a popular model for cardiovascular studies due to the existence of low cost technology for genetic engineering in this species. Cardiovascular physiological phenotyping of the mouse heart can be easily done using fluorescence imaging employing various probes for transmembrane potential (V(m;)), calcium transients (CaT), and other parameters. Excitation-contraction coupling is...

متن کامل

Voltage and calcium dual channel optical mapping of cultured HL-1 atrial myocyte monolayer.

Optical mapping has proven to be a valuable technique to detect cardiac electrical activity on both intact ex vivo hearts and in cultured myocyte monolayers. HL-1 cells have been widely used as a 2-Dimensional cellular model for studying diverse aspects of cardiac physiology. However, it has been a great challenge to optically map calcium (Ca) transients and action potentials simultaneously fro...

متن کامل

Role of calcium cycling versus restitution in the mechanism of repolarization alternans.

T-wave alternans, a powerful marker of arrhythmic events, results from alternation in action potential duration (APD). The underlying cellular mechanism of APD alternans is unknown but has been attributed to either intracellular calcium (Ca2+) cycling or membrane ionic currents, manifested by a steep slope of cellular APD restitution. To address these mechanisms, high-resolution optical mapping...

متن کامل

Intracellular calcium handling heterogeneities in intact guinea pig hearts.

Regional heterogeneities of ventricular repolarizing currents and their role in arrhythmogenesis have received much attention; however, relatively little is known regarding heterogeneities of intracellular calcium handling. Because repolarization properties and contractile function are heterogeneous from base to apex of the intact heart, we hypothesize that calcium handling is also heterogeneou...

متن کامل

Calcium-Dependent Arrhythmogenic Foci Created by Weakly Coupled Myocytes in the Failing Heart.

RATIONALE Intercellular uncoupling and Ca2+ (Ca) mishandling can initiate triggered ventricular arrhythmias. Spontaneous Ca release activates inward current which depolarizes membrane potential (Vm) and can trigger action potentials in isolated myocytes. However, cell-cell coupling in intact hearts limits local depolarization and may protect hearts from this arrhythmogenic mechanism. Traditiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 280 5  شماره 

صفحات  -

تاریخ انتشار 2001